Simplified surface preparation for GaAs passivation using atomic layer-deposited high-kappa dielectrics
نویسندگان
چکیده
Atomic layer deposition (ALD) provides a unique opportunity to integrate high-quality gate dielectrics on III–V compound semiconductors. The physics and chemistry of a III–V compound semiconductor surface or interface are problems so complex that even after three decades research understanding is still limited. We report a simplified surface preparation process using ammonium hydroxide (NH4OH) to remove the native oxide and make the hydroxylated GaAs surface ready for ALD surface chemistry. The effectiveness of GaAs passivation with ALD Al2O3 is demonstrated with small hysteresis, 1%–2% frequency dispersion per decade at accumulation capacitance, and a mid-bandgap Dit of 8 × 10 to 1 × 10 cm−2 · eV−1 determined by the Terman method. The results from ammonium sulfide [(NH4)2S]-, hydrofluoric acid (HF)-, and hydrochloric acid (HCl)-treated surfaces and a surface with native oxide are also presented to compare with the results from the ammonium-hydroxide-treated surface. Fermi-level unpinning is also easily demonstrated on the ALD HfO2 and p-type GaAs interface.
منابع مشابه
Passivation of GaAs surface by atomic-layer-deposited titanium nitride
The suitability of titaniumnitride (TiN) for GaAs surface passivation and protection is investigated. A 2–6nm thick TiN passivation layer is deposited by atomic layer deposition (ALD) at 275 C on top of InGaAs/ GaAs near surface quantum well (NSQW) structures to study the surface passivation. X-ray reflectivity measurements are used to determine the physical properties of the passivation layer....
متن کاملAtomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors
High performance single-walled carbon nanotube field effect transistors SWCNT-FETs fabricated with thin atomic layer deposited ALD Al2O3 as gate dielectrics and passivation layer are demonstrated. A 1.5 m gate-length SWCNT-FETs with 15 nm thick Al2O3 insulator shows a gate leakage current below 10−11 A at −2.5 V Vg +7 V, a subthreshold swing of S 105 mV/decade, and a maximum on current of −12 A...
متن کاملCurrent-transport properties of atomic-layer-deposited ultrathin Al2O3 on GaAs
We report detailed current-transport studies of ultrathin Al2O3 dielectrics on GaAs grown by atomic layer deposition (ALD) as a function of film thickness, ambient temperature and electric field. The leakage current in ultrathin Al2O3 on GaAs is comparable to or even lower than that of the state-of-the-art SiO2 on Si, not counting on high dielectric constant for Al2O3. By measuring leakage curr...
متن کاملStudy of ozone surface passivation and n-type Dopant channel implants combined with ALD dielectrics
ABSRACT Germanium offers higher electron and hole mobility than silicon, making it an attractive option for future high-performance MOSFET applications. To date, Ge p-channel device behavior has shown promise, with many reports of measured hole mobilities exceeding that of Si. However, Ge n-channel devices have shown poor performance due to an asymmetric distribution of interface state density ...
متن کاملProcessing and Characterization of III–V Compound Semiconductor MOSFETs Using Atomic Layer Deposited Gate Dielectrics
We demonstrate III–V compound semiconductor (GaAs, InGaAs, and GaN) based metal-oxide-semiconductor field-effect transistors (MOSFETs) with excellent performance using an Al2O3 high-permittivity (high-k) gate dielectric, deposited by atomic layer deposition (ALD). These MOSFET devices exhibit extremely low gate-leakage current, high transconductance, high dielectric breakdown strength, a high s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014